the short *a* axis, with interplanar spacings 3.52(1) Å; in the dichloro crystal, molecular planes are nearly parallel to **a** (Trotter, 1959), and separated by 3.52(1) Å. The shortest X...X, X...C, X...H, C...C, C...H, H...H contacts are 3.966(1), 3.653(7), 3.08, > 3.5, 2.97, 2.59 Å, respectively, for the dibromo compound, and 3.765(1), 3.520(2), 2.95, 3.491(3), > 3.1, 2.38 Å for the dichloro compound, corresponding to van der Waals interactions.

The structure of a second polymorphic modification of 9,10-dichloroanthracene, isostructural with 9,10dibromoanthracene, has been described (Burshtein, Hanson, Ingold & Williams, 1978; Krauss, Schulz, Nesper & Thiemann, 1979).

The author thanks R. J. Nelmes, R. O. Gould and T. W. Ryan for their hospitality and assistance, and the Killam Foundation for a Research Fellowship.

References

- ABRAHAMS, S. C. & KEVE, E. T. (1971). Acta Cryst. A27, 157-165.
- BURSHTEIN, Z., HANSON, A. W., INGOLD, C. F. & WILLIAMS, D. F. (1978). J. Phys. Chem. Solids, 39, 1125–1131.
- CRUICKSHANK, D. W. J. (1956). Acta Cryst. 9, 915-923.
- DOMENICANO, A., VACIAGO, A. & COULSON, C. A. (1975). Acta Cryst. B31, 1630–1641.
- International Tables for X-ray Crystallography (1969). Vol. I, p. 531. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
- International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
- KRAUSS, R., SCHULZ, H., NESPER, R. & THIEMANN, K. H. (1979). Acta Cryst. B35, 1419–1424.
- LEHMANN, M. S. & PAWLEY, G. S. (1972). Acta Chem. Scand. 26, 1996–2004.
- SHELDRICK, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
- TROTTER, J. (1958). Acta Cryst. 11, 803-807.
- TROTTER, J. (1959). Acta Cryst. 12, 54-58.

Acta Cryst. (1986). C42, 864-866

Structure du Chlorhydrate d'Isobutoxy-1 [(Propyne-1 yl)-1 cyclohexyloxy]-3 (Pyrrolidinyl-1)-2 Propane

PAR L. DUPONT ET O. DIDEBERG

Laboratoire de Cristallographie, Institut de Physique B5, Université de Liège au Sart Tilman, B-4000 Liège, Belgique

ET J. SIMOND

RIOM Laboratoires-CERM, route de Marsat, BP140, F-63203 RIOM CEDEX, France

(Reçu le 24 avril 1985, accepté le 12 mai 1986)

Abstract. $C_{20}H_{36}NO_2^+.Cl^-$, $M_r = 357.96$, m.p. 409.8 K, monoclinic, $P2_1/a$, a = 12.416 (3), b = 11.688 (3), c = 14.671 (3) Å, $\beta = 92.63$ (1)°, V = 2127.1 (3) Å³, Z = 4, $D_x = 1.117$ g cm⁻³, λ (Cu Ka) = 1.5418 Å, μ = 15.74 cm⁻¹, T = 290 K, F(000) = 784, final R =0.073 for 2060 observed reflections. Structure solved by direct methods. The conformations of the pyrrolidine and cyclohexyl rings are respectively chair and twist (half-chair). The cohesion of the crystal is the result of van der Waals interactions and an N-H…Cl hydrogen bond [N…Cl 3.049 (3) Å]. There are no unusual bond distances or angles.

Introduction. Le composé étudié est le chlorhydrate d'une nouvelle molécule développée par RIOM Laboratoires-CERM (France) dans la lignée du Bepridil®; celle-ci possède des propriétés antagonistes du calcium, anti-isohémiques et anti-arythmiques. Le schéma de synthèse est décrit par la Fig. 1.

Fig. 1. Schema de synthèse du CERM 4205.

0108-2701/86/070864-03\$01.50

© 1986 International Union of Crystallography

Partie expérimentale. Composé synthétisé au CERM. Numéro de référence: CERM 4205. Cristallisé dans incolore: $0.5 \times 0.5 \times 0.4$ mm. l'éthanol. Cristal Paramètres de la maille déterminés à partir de 9 $(17.5^{\circ} \le \theta \le 25.0^{\circ}).$ Diffractomètre réflexions Siemens, 2935 réflexions mesurées, $\theta \le 70^\circ$, Cu Ka monochromatisée au graphite, balayage ω , 2555 réflexions indépendantes, $-15 \le h \le 15$, $0 \le k \le 14$, $0 \le l \le 10$; $R_{int} = 3,6\%$. Variations des intensités des $310 \le F_o$ (400) ≤ 321 , référence: réflexions de $188 \le F_o$ (040) ≤ 192 . 2060 réflexions observées [I >2.5 $\sigma(I)$]. Pas de correction d'absorption. Structure déterminée avec le programme MULTAN80 (Main, Fiske, Hull, Lessinger, Germain, Declercq & Woolfson, 1980). La solution avant le meilleur critère de confiance CFOM a fourni les positions de 18 des 24 atomes non-hydrogène. Les autres ont été obtenues par Fourier-différence. Affinement basé sur F (matrice entière des équations normales), avec SHELX76 (Sheldrick, 1976). Facteurs de diffusion sont ceux de SHELX76. Facteurs de température anisotropes affinés pour les atomes non-hydrogène; atomes H placés suivant des paramètres géométriques standard. Facteur B global affiné pour les H = 7.9 (3) Å² excepté ceux des méthyles considérés comme des groupes rigides où B affinė = 15 (1) Å². Facteur R final = 0,073 pour 2060 réflexions observées;* wR = 0.084 avec $w = 1/[\sigma^2(F_o)]$ + 0,006607 F_a^2]. $\Delta/\sigma < 0.5$. Pas d'affinement du facteur d'extinction secondaire. Limites des hauteurs de pic dans le Fourier-différence final: -0.4 et 0.5 e Å⁻³. Dimension et qualité du cristal sont responsables de la valeur élevée de R.

Discussion. Les paramètres atomiques sont données dans le Tableau 1 et les distances et angles interatomiques dans le Tableau 2. La Fig. 2 est une vue de la molécule.

^{*} Les listes des facteurs de structure, des facteurs d'agitation thermique anisotrope et des coordonnées des atomes H ont été déposées au dépôt d'archives de la British Library Lending Division (Supplementary Publication No. SUP 42518: 12 pp.). On peut en obtenir des copies en s'adressant à: The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

Fig. 2. Vue en perspective de $C_{20}H_{36}NO_2^+.Cl^-$.

La conformation du cycle pyrrolidine est proche d'une conformation demi-chaise: les paramètres de Cremer & Pople (1975), calculés avec le programme PUCK2 (Luger & Bülow, 1983), valent respectivement O = 0.306 (4) Å et $\varphi = 341$ (1)° (cycle parfait: O

Tableau 1. Coordonnées fractionnaires $(\times 10^4)$ et les B_{in} des atomes non-hydrogène, avec les écarts-type

$B_{\text{éq}} = \frac{8}{3}\pi^2 \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j,$	où	a _i est	la	constante	de	la	maille
	dir	ecte.					

	x	у	z	$B_{\rm \acute{e}q}({\rm \AA}^2)$
C(1)	14041 (3)	-1403 (3)	7784 (3)	3,88 (11)
C(2)	15276 (3)	-1357 (4)	7877 (3)	4.83 (12)
C(3)	15710 (3)	-2197 (4)	8598 (4)	5,67 (14)
C(4)	15349 (4)	-3402 (4)	8386 (4)	6,41 (15)
C(5)	14112 (4)	-3475 (4)	8278 (3)	5,41 (13)
C(6)	13691 (3)	-2628 (3)	7545 (3)	4,86 (13)
C(7)	13566 (3)	-1019 (3)	8637 (3)	3,86 (12)
C(8)	13193 (4)	-725 (4)	9334 (4)	5,00 (14)
C(9)	12727 (5)	-339 (6)	10175 (4)	7,90 (20)
C(10)	12624 (3)	-447 (4)	6931 (3)	4.53 (12)
C(11)	12369 (3)	341 (3)	6121 (3)	3,86 (11)
C(12)	11210 (3)	780 (4)	6196 (3)	4,65 (12)
C(13)	10152 (3)	1738 (4)	7234 (3)	5,14 (13)
C(14)	10202 (5)	2459 (4)	8084 (4)	6,40 (17)
C(15)	9040 (6)	2804 (6)	8310 (5)	9,42 (24)
C(16)	10781 (5)	1845 (6)	8873 (4)	8,17 (22)
C(17)	13576 (3)	-681 (4)	5057 (3)	4,87 (15)
C(18)	13613 (4)	-769 (5)	4046 (4)	7,24 (21)
C(19)	12637 (4)	-261(5)	3632 (3)	6,10 (16)
C(20)	12085 (3)	348 (4)	4385 (3)	4,53 (12)
Cl(1)	9087 (1)	2311(1)	4687 (1)	5,61 (4)
N(1)	12451 (2)	-283 (2)	5239 (2)	3,50 (9)
O(1)	13751 (2)	-629 (2)	7049 (2)	4,08 (7)
O(2)	11207 (2)	1463 (2)	6992 (2)	5,27 (9)

Tableau 2.	Distances	interatomiques	(A) et	angles	des
liaisons	(°) avec le	s écarts-type en	tre pare	enthèses	5

C(7) - C(1)	1,478 (6)	C(12)-C(11)	1,536 (5)
C(2) - C(1)	1,535 (5)	N(1) - C(11)	1,494 (5)
C(6) - C(1)	1,532 (5)	O(2) - C(12)	1,416 (5)
$\mathbf{D}(\mathbf{I}) - \mathbf{C}(\mathbf{I})$	1,441 (4)	C(14) - C(13)	1,504 (7)
C(3) - C(2)	1.523 (6)	O(2) - C(13)	1,409 (4)
C(4) - C(3)	1,506 (7)	C(14) - C(15)	1,548 (7)
C(5) - C(4)	1,540 (6)	C(16) - C(14)	1,515 (8)
C(6) - C(5)	1,536 (6)	C(18) - C(17)	1,490 (7)
C(8) - C(7)	1,192 (6)	N(1) - C(17)	1,507 (4)
C(9) - C(8)	1,458 (7)	C(19) - C(18)	1,457 (7)
C(11) - C(10)	1,524 (5)	C(20)-C(19)	1,505 (6)
D(1) - C(10)	1,418 (4)	N(1)-C(20)	1,506 (5)
C(6) - C(1) - C(2)	109,0 (3)	N(1)-C(11)-C(12)	109,0 (3)
C(7) - C(1) - C(2)	110,5 (3)	O(2)-C(12)-C(11)	106,6 (3)
C(7) - C(1) - C(6)	110,9 (3)	O(2)-C(13)-C(14)	109,5 (4)
D(1) - C(1) - C(2)	105,0 (3)	C(15)-C(14)-C(13)	108,7 (5)
D(1) - C(1) - C(6)	110,9 (3)	C(16)-C(14)-C(13)	111,5 (4)
D(1) - C(1) - C(7)	110,4 (3)	C(16)-C(14)-C(15)	112,0 (5)
C(3)-C(2)-C(1)	111,1 (3)	N(1)–C(17)–C(18)	105,6 (3)
C(4) - C(3) - C(2)	111,5 (4)	C(19)-C(18)-C(17)	108,9 (4)
C(5)-C(4)-C(3)	111,0 (3)	C(20)-C(19)-C(18)	106,6 (4)
C(6) - C(5) - C(4)	110,0 (4)	N(1)-C(20)-C(19)	104,4 (3)
C(5) - C(6) - C(1)	111,0 (3)	C(17)–N(1)–C(11)	113,8 (3)
C(8)C(7)-C(1)	178,8 (4)	C(20)-N(1)-C(11)	116,9 (3)
C(9)–C(8)–C(7)	178,6 (5)	C(20)-N(1)-C(17)	104,6 (3)
D(1)-C(10)-C(11)	110,8 (3)	C(10)-O(1)-C(1)	113,4 (3)
C(12) - C(11) - C(10)	107,9 (3)	C(13)-O(2)-C(12)	112,0 (3)
N(1) - C(11) - C(10)	111.1 (3)		

depend de l'hétéro-atome: par exemple Q = 0.35 Å dans le tétrahydrofuranne gazeux; $\varphi = 342^{\circ}$). Les angles dièdres internes du cycle ont les valeurs suivantes [autour de N(1)-C(17), puis C(17)-C(18), *etc.*]: -25,7 (4); 9,6 (7); 10,5 (4); -26,5 (4); et 32,0 (4)°. Les paramètres du cyclohexane sont: Q= 0,589 (5) Å, $\theta = 2,3$ (5)° et $\varphi = 335$ (11)° [cycle parfait pour R(C-C) = 1,54 Å: respectivement 0,63 Å, 0° et 360°]. Sa conformation est donc du type chaise avec des angles dièdres compris entre 55,8 (5) et 59,4 (7)°.

La cohésion du cristal est assurée par les contacts de van der Waals et par une liaison hydrogène N-H···Cl ayant les caractéristiques suivantes: d(N-H) = 1,08 (5), $d(H\cdots Cl) = 1,98$ (5), $d(N\cdots Cl) = 3,049$ (3) Å et ∠N-H···Cl = 168 (2)°.

Références

- CREMER, D. & POPLE, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- LUGER, P. & BÜLOW, R. (1983). J. Appl. Cryst. 16, 431-432.
- MAIN, P., FISKE, S. J., HULL, S. E., LESSINGER, L., GERMAIN, G., DECLERCO, J.-P. & WOOLFSON, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. de York, Angleterre, et de Louvain-la-Neuve, Belgique.
- SHELDRICK, G. M. (1976). SHELX76. Programme pour la détermination de structures cristallines. Univ. de Cambridge, Angleterre.

Acta Cryst. (1986). C42, 866-868

Dipyridiniomethan-Diiodid

VON IRENE BRÜDGAM UND HANS HARTL

Institut für Anorganische und Analytische Chemie der Freien Universität Berlin, Fabeckstraße 34–36, D-1000 Berlin 33, Bundesrepublik Deutschland

(Eingegangen am 9. Juli 1985, angenommen am 21. Februar 1986)

Abstract. $C_{11}H_{12}N_2^{2+}.2I^-$, $M_r = 426.04$, orthorhombic, $P2_12_12_1$, a = 17.504 (8), b = 10.433 (6), c = 7.856 (6) Å, V = 1434.66 Å³, Z = 4, $D_x = 1.97$ g cm⁻³, λ (Mo K α) = 0.7107 Å, $\mu = 43.9$ cm⁻¹, T = 293 K, F(000) = 724, R = 0.028 for 1767 observed, independent reflexions. Crystals were obtained from CH₂I₂ and pyridine. The crystal structure shows short cation-iodide contacts [3.620 (7)-3.742 (9) Å] suitable for charge-transfer processes in the solid state.

Einleitung. In der Vergangenheit sind eine Reihe von Strukturuntersuchungen von Iodiden mit Kationen, wie 1-Methylnicotinamid (Freeman & Bugg, 1974), *N*-Methylpyridinium (Lalancette, Furey, Constanzo, Hemmes & Jordan, 1978) oder *N*,*N*-substituiertem Bipyridylium (Russell & Wallwork, 1971) durchgeführt worden. Der Anlaß zur Ermittlung der Kristallstrukturen war häufig das Interesse an Eigenschaften dieser Verbindungen, wie 'Charge-Transfer'-Verhalten | und elektrischer Leitfähigkeit in festem Zustand (Mac-Farlane & Williams, 1969) oder in Lösung (Brody & Fuoss, 1957).

Vergleichbare Gründe waren auch für die vorliegende Strukturuntersuchung ausschlaggebend. Wir haben festgestellt, daß Dipyridiniomethan, $[py_2CH_2]^{2+}$, ein organisches Kation mit guten Kristallisationseigenschaften ist und z.B. die Stabilisierung ungewöhnlicher Iodometallationen, wie $[Cu_2I_6]^{4-}$ (Hartl, Brüdgam & Mahdjour-Hassan-Abadi, 1985), $[Cu_{19}I_{27}]^{8-}$ oder $2[Cu_6I_{11}]^{5-}.I^-$ (Hartl & Mahdjour-Hassan-Abadi,

0108-2701/86/070866-03\$01.50

1985) zuläßt. Die Voraussetzungen zur Ausbildung von Ionenpaaren als günstige, strukturelle Vorbedingung für 'Charge-Transfer'-Wechselwirkungen sind gut: Die zweifach positive Ladung am Kation begünstigt als Folge der starken Couloumb-Wechselwirkungen die Ausbildung enger Kation-Anion-Kontakte. ESR-Signale der formal diamagnetischen, goldgelben Substanz liefern Hinweise auf das Auftreten von Radikal-Kationen $[py_2CH_2]^+$ in festem Zustand. Daneben ist noch erwähnenswert, daß $[py_2CH_2]I_2$ als wirksames Chemosterilant für Schraubenwurmfliegen (*Cochliomyia ominivorax*) ausgetestet worden ist (Oliver & Crystal, 1972).

Experimentelles. Dipyridiniomethan-diiodid, (py₂-CH₂)I₂, wurde durch Umsetzung von Diiodmethan mit Pyridin dargestellt und aus Ethanol/Wasser umkristallisiert. Die Verbindung kristallisiert in goldgelben, blättchenförmigen Kristallen. Zur Strukturbestimmung wurden 2002 symmetrieunabhängige Reflexe eines Kristalles mit den Abmessungen $0.16 \times$ $0,27 \times 0,51$ mm auf einem Stoe-Vierkreisdiffraktometer vermessen: Mo $K\alpha$ -Strahlung, Zr-Filter, $\theta/2\theta$ -Abtastung, $2\theta_{\text{max}} = 56^\circ$; $h \le 23$, $k \le 13$, $l \le 10$, maximale Meßzeit 100 s pro Reflex; 2 Kontrollreflexe nach jeweils 20 Reflexen zeigten keine Veränderungen während der gesamten Meßzeit; 235 Reflexe mit einer Intensität $\langle 2\sigma(I) \rangle$ wurden als unbeobachtet eingestuft. Die Gitterparameter wurden aus 15 Reflexen im Beugungswinkelbereich $2\theta = 35$ bis 45° ermittelt. Die

© 1986 International Union of Crystallography